Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sequence replacements in the central beta-turn of plastocyanin.

Identifieur interne : 004A31 ( Main/Exploration ); précédent : 004A30; suivant : 004A32

Sequence replacements in the central beta-turn of plastocyanin.

Auteurs : J A Ybe [États-Unis] ; M H Hecht

Source :

RBID : pubmed:8732753

Descripteurs français

English descriptors

Abstract

The role of beta-turns in dictating the structure of a beta-barrel protein is assessed by probing the tolerance of the central beta-turn of poplar plastocyanin to substitution by arbitrary sequences. Native plastocyanin binds copper and is colored bright blue. However, when the wild-type Pro47-Ser48-Gly49-Val50 turn sequence is replaced by arbitrary tetrapeptides, the vast majority (92/98 = 94%) of mutant proteins cannot fold into the native blue structure. Characterization of the colorless mutant proteins demonstrates that the majority of substitutions in this type II beta-turn disrupt the native structure severely. Gross structural changes are indicated by major differences in the CD spectra of the mutants relative to the wild-type protein, and by the much larger apparent size of mutant proteins in gel filtration experiments. These mutant proteins do not bind copper. Furthermore, Cys84 forms a disulfide bond readily in the colorless mutant proteins, indicating that it has moved away from the buried position it occupies in the native copper binding site and has become exposed. These results indicate that the central beta-turn in plastocyanin is not merely a default structure arising in response to the surrounding context; rather, sequence information in this turn plays an active role in dictating the location of a chain reversal in the beta-barrel structure. These findings are discussed in terms of their implications for the folding of natural proteins, as well as the design of de novo proteins.

DOI: 10.1002/pro.5560050503
PubMed: 8732753
PubMed Central: PMC2143404


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sequence replacements in the central beta-turn of plastocyanin.</title>
<author>
<name sortKey="Ybe, J A" sort="Ybe, J A" uniqKey="Ybe J" first="J A" last="Ybe">J A Ybe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, Princeton University, New Jersey 08544-1009, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Princeton University, New Jersey 08544-1009</wicri:regionArea>
<orgName type="university">Université de Princeton</orgName>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hecht, M H" sort="Hecht, M H" uniqKey="Hecht M" first="M H" last="Hecht">M H Hecht</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1996">1996</date>
<idno type="RBID">pubmed:8732753</idno>
<idno type="pmid">8732753</idno>
<idno type="pmc">PMC2143404</idno>
<idno type="doi">10.1002/pro.5560050503</idno>
<idno type="wicri:Area/Main/Corpus">004A44</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004A44</idno>
<idno type="wicri:Area/Main/Curation">004A44</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004A44</idno>
<idno type="wicri:Area/Main/Exploration">004A44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sequence replacements in the central beta-turn of plastocyanin.</title>
<author>
<name sortKey="Ybe, J A" sort="Ybe, J A" uniqKey="Ybe J" first="J A" last="Ybe">J A Ybe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, Princeton University, New Jersey 08544-1009, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Princeton University, New Jersey 08544-1009</wicri:regionArea>
<orgName type="university">Université de Princeton</orgName>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hecht, M H" sort="Hecht, M H" uniqKey="Hecht M" first="M H" last="Hecht">M H Hecht</name>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="ISSN">0961-8368</idno>
<imprint>
<date when="1996" type="published">1996</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Circular Dichroism (MeSH)</term>
<term>Colorimetry (MeSH)</term>
<term>Copper (analysis)</term>
<term>Escherichia coli (genetics)</term>
<term>Gene Library (MeSH)</term>
<term>Genes, Synthetic (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Monte Carlo Method (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Plastocyanin (chemistry)</term>
<term>Plastocyanin (genetics)</term>
<term>Protein Denaturation (MeSH)</term>
<term>Protein Folding (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Banque de gènes (MeSH)</term>
<term>Colorimétrie (MeSH)</term>
<term>Cuivre (analyse)</term>
<term>Dichroïsme circulaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Dénaturation des protéines (MeSH)</term>
<term>Escherichia coli (génétique)</term>
<term>Gènes de synthèse (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Méthode de Monte Carlo (MeSH)</term>
<term>Plastocyanine (composition chimique)</term>
<term>Plastocyanine (génétique)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Protéines de fusion recombinantes (composition chimique)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Copper</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plastocyanin</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Cuivre</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Plastocyanine</term>
<term>Protéines de fusion recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Plastocyanin</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Escherichia coli</term>
<term>Plastocyanine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Circular Dichroism</term>
<term>Colorimetry</term>
<term>Gene Library</term>
<term>Genes, Synthetic</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Monte Carlo Method</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Denaturation</term>
<term>Protein Folding</term>
<term>Protein Structure, Secondary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Banque de gènes</term>
<term>Colorimétrie</term>
<term>Dichroïsme circulaire</term>
<term>Données de séquences moléculaires</term>
<term>Dénaturation des protéines</term>
<term>Gènes de synthèse</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Méthode de Monte Carlo</term>
<term>Pliage des protéines</term>
<term>Structure secondaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The role of beta-turns in dictating the structure of a beta-barrel protein is assessed by probing the tolerance of the central beta-turn of poplar plastocyanin to substitution by arbitrary sequences. Native plastocyanin binds copper and is colored bright blue. However, when the wild-type Pro47-Ser48-Gly49-Val50 turn sequence is replaced by arbitrary tetrapeptides, the vast majority (92/98 = 94%) of mutant proteins cannot fold into the native blue structure. Characterization of the colorless mutant proteins demonstrates that the majority of substitutions in this type II beta-turn disrupt the native structure severely. Gross structural changes are indicated by major differences in the CD spectra of the mutants relative to the wild-type protein, and by the much larger apparent size of mutant proteins in gel filtration experiments. These mutant proteins do not bind copper. Furthermore, Cys84 forms a disulfide bond readily in the colorless mutant proteins, indicating that it has moved away from the buried position it occupies in the native copper binding site and has become exposed. These results indicate that the central beta-turn in plastocyanin is not merely a default structure arising in response to the surrounding context; rather, sequence information in this turn plays an active role in dictating the location of a chain reversal in the beta-barrel structure. These findings are discussed in terms of their implications for the folding of natural proteins, as well as the design of de novo proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8732753</PMID>
<DateCompleted>
<Year>1997</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0961-8368</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<Issue>5</Issue>
<PubDate>
<Year>1996</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Protein science : a publication of the Protein Society</Title>
<ISOAbbreviation>Protein Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Sequence replacements in the central beta-turn of plastocyanin.</ArticleTitle>
<Pagination>
<MedlinePgn>814-24</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The role of beta-turns in dictating the structure of a beta-barrel protein is assessed by probing the tolerance of the central beta-turn of poplar plastocyanin to substitution by arbitrary sequences. Native plastocyanin binds copper and is colored bright blue. However, when the wild-type Pro47-Ser48-Gly49-Val50 turn sequence is replaced by arbitrary tetrapeptides, the vast majority (92/98 = 94%) of mutant proteins cannot fold into the native blue structure. Characterization of the colorless mutant proteins demonstrates that the majority of substitutions in this type II beta-turn disrupt the native structure severely. Gross structural changes are indicated by major differences in the CD spectra of the mutants relative to the wild-type protein, and by the much larger apparent size of mutant proteins in gel filtration experiments. These mutant proteins do not bind copper. Furthermore, Cys84 forms a disulfide bond readily in the colorless mutant proteins, indicating that it has moved away from the buried position it occupies in the native copper binding site and has become exposed. These results indicate that the central beta-turn in plastocyanin is not merely a default structure arising in response to the surrounding context; rather, sequence information in this turn plays an active role in dictating the location of a chain reversal in the beta-barrel structure. These findings are discussed in terms of their implications for the folding of natural proteins, as well as the design of de novo proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ybe</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Princeton University, New Jersey 08544-1009, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hecht</LastName>
<ForeName>M H</ForeName>
<Initials>MH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BRTP RR01614</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R29-GM47844-01</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Protein Sci</MedlineTA>
<NlmUniqueID>9211750</NlmUniqueID>
<ISSNLinking>0961-8368</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-09-9</RegistryNumber>
<NameOfSubstance UI="D010970">Plastocyanin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003124" MajorTopicYN="N">Colorimetry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005813" MajorTopicYN="N">Genes, Synthetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009010" MajorTopicYN="N">Monte Carlo Method</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010970" MajorTopicYN="N">Plastocyanin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011489" MajorTopicYN="N">Protein Denaturation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="Y">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1996</Year>
<Month>5</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1996</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1996</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8732753</ArticleId>
<ArticleId IdType="pmc">PMC2143404</ArticleId>
<ArticleId IdType="doi">10.1002/pro.5560050503</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Biochem Sci. 1989 Apr;14(4):145-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2658222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1994 Nov;3(11):2015-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7535612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Jun;82(12):4028-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3858860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 May 3;33(17):5021-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8172877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1994 Jul;3(7):1069-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7920252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 23;250(4984):1121-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17840193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1994 Oct;1(10):706-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7634075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1983 Nov;25(2-3):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6363212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem. 1981;34:167-339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7020376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr B. 1992 Dec 1;48 ( Pt 6):790-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1492962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Nov 23;32(46):12299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8241116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 Nov 1;298(2):413-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1416972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 May 5;264(13):7590-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2651442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1983 Sep 15;169(2):521-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6620385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 May 4;339(6219):73-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2716830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Aug 5;226(3):819-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1507228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Apr 19;228(4697):291-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3838593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">271968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Feb 11;16(3):791-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2830593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Oct 22;30(42):10150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1931945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Jan 4;343(6253):38-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2296288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6552-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7604031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1971 Feb 2;10(3):470-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5543977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Jul 22;364(6435):355-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8332196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jul 23;358(6384):347-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1353610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Aug 19;241(4868):976-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3043666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Sep 20;27(19):7167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3061450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1995 Mar;8(3):249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7479687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1990;185:60-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2199796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1994 Dec;3(12):2207-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7756980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Aug 8;34(31):9834-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7543279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1984 Jan 26-Feb 1;307(5949):329-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6694731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8747-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8090717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Apr 8;237(4):378-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8151699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1985 Jun 25;13(12):4431-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2989795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 1994 Aug;5(4):317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7950377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 May 20;238(5):733-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8182746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Dec 10;262(5140):1680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8259512</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Hecht, M H" sort="Hecht, M H" uniqKey="Hecht M" first="M H" last="Hecht">M H Hecht</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Ybe, J A" sort="Ybe, J A" uniqKey="Ybe J" first="J A" last="Ybe">J A Ybe</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004A31 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004A31 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:8732753
   |texte=   Sequence replacements in the central beta-turn of plastocyanin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:8732753" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020